# A brief global overview of plastic waste and the key role of the atmosphere: Sources, transport and impacts

This manuscript version is made available in fulfillment of publisher's policy. Please, cite as follows:

Marina Nuñez-Rubio, Francisca Fernández-Piñas, Roberto Rosal, Miguel González-Pleiter, Gerardo Pulido-Reyes. A brief global overview of plastic waste and the key role of the atmosphere: Sources, transport and impacts. Javier Hernández-Borges and Javier González-Sálamo (Eds.) Microplastics in the Environment: Occurrence, Fate and Distribution. Advances in Chemical Pollution, Environmental Management and Protection, ISSN 2468-9289, Elsevier, 2025.

https://doi.org/10.1016/bs.apmp.2025.03.004

## A brief global overview of plastic waste and the key role of the atmosphere: Sources, transport and impacts

Marina Nuñez-Rubio<sup>1</sup>, Francisca Fernández-Piñas<sup>1,2</sup>, Roberto Rosal<sup>3</sup>, FMiguel González-Pleiter<sup>1,2,\*</sup>, Gerardo Pulido-Reyes<sup>1,\*</sup>

<sup>1</sup>Department of Biology, Faculty of Science, Universidad Autónoma de Madrid, Madrid, Spain
 <sup>2</sup>Centro de Investigación en Biodiversidad y Cambio Global, Universidad Autónoma de Madrid. Darwin 2, 28049 Madrid, Spain
 <sup>3</sup>Department of Chemical Engineering, Universidad de Alcalá, E-28871 Alcalá de Henares, Madrid, Spain

#### **Abstract**

Plastic waste in the atmosphere, particularly microplastics (MPs), has emerged as a critical environmental issue due to their capacity to remain temporarily suspended in air. Over the past decade, significant advancements have been made in understanding their sources, atmospheric transport, environmental fate, and associated impacts. Early studies primarily examined their deposition in urban areas, while recent research has identified additional emission sources, long-range atmospheric transport, the occurrence of suspended MPs and their impacts. MPs may influence atmospheric processes, such as ice nucleation dynamics, and pose risks to respiratory health in air-breathing organisms, including humans, by potentially damaging lung tissue. Furthermore, MPs could act as vectors for microorganisms, facilitating the spread of viruses and bacteria. Despite these advancements, further research is needed to standardize methodologies and deepen our understanding of their atmospheric transport, their role in ice nucleation, and their function as microbial carriers, ultimately mitigating their potential 'One Health' impacts.

## 1. A brief global overview of plastic waste: Does the atmosphere play a role?

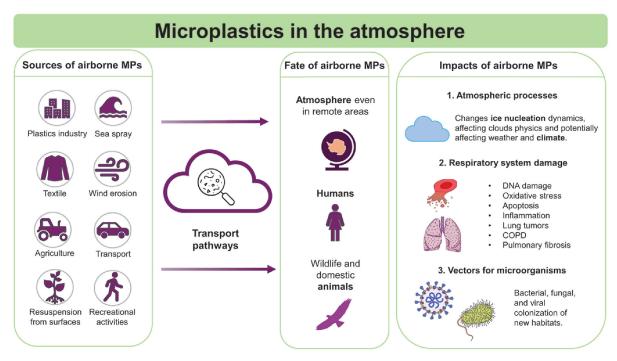
Plastic pollution is a growing global concern<sup>1</sup>, with its production continuing to rise each year<sup>2</sup>, prompting the governments worldwide to take significant action<sup>3,4</sup>. In 2023 alone, more than 400 million tons of plastic were produced worldwide, excluding those used in textiles, adhesives, and medical applications<sup>5</sup>. Due to their durability, versatility, and low cost, plastics are utilized across various industrial sectors<sup>6</sup>. In 2021, the primary uses include packaging (44%), construction (18%), automotive (8%), electronics (7%), and agriculture, farming and gardening  $(4\%)^7$ . However, most plastics are employed in short-lived applications, such as packaging (lasting weeks) or agricultural films (lasting months), despite their persistent nature, often remaining in the environment for decades<sup>8</sup>. At the end of their useful life, plastics become waste. A portion of this waste is managed through recycling and the majority of plastic waste is either sent to landfills or used for energy recovery<sup>9</sup>.

Plastics that are not properly managed, or those that undergo accidents during handling (such as the recent case of pellets washing up on Galician beaches), may end up in the environment<sup>10</sup>. The global macroplastic waste emissions are estimated at 52.1 Mt per year<sup>11</sup>. Once in nature, plastic waste undergoes fragmentation and abiotic and/or biotic degradation processes, influenced by local environmental conditions and modulated by the physical and chemical properties of the polymer material. Fragmentation is driven by physical processes such as weathering, freeze-thaw cycles, pressure changes, water turbulence and biological activity. Abiotic degradation mechanisms include hydrolysis, redox reactions, thermal degradation, or photo-oxidation, while biotic degradation involves the action of individual or communities of microorganisms (fungi, bacteria, and others). These processes result in the progressive breakdown of plastic waste into smaller particles, resulting in microplastics (MPs; particles <5 mm in size), nanoplastics, oligomers, and eventually greenhouse gases. Plastics generated through the degradation of larger items are classified as secondary plastics, whereas plastics intentionally manufactured at small scales are termed primary plastics. Since the 1970s, plastic waste has been detected across various environmental compartments. Initial findings reported plastics in the marine environment, such as in seabirds and seawater<sup>12–14</sup>. In recent decades,

<sup>\*</sup> Corresponding authors: mig.gonzalez@uam.es and gerardo.pulido@uam.es Available online: July 3, 2025

MPs have also been identified in humans<sup>15,16</sup> and across all major environmental compartments, including the biosphere<sup>17</sup>, lithosphere<sup>18</sup>, cryosphere<sup>19</sup>, and atmosphere<sup>20</sup>. Even the most remote regions of the planet are not exempt from plastic contamination. MPs have been discovered in high-altitude atmospheric layers<sup>21</sup>, Antarctica<sup>22–23</sup>, and mountain peaks, including Mount Everest<sup>24</sup>. Recently, plastic waste has also been identified as contributing to the formation of novel geological materials<sup>25–26</sup>.

Plastic waste has been shown to cause significant damage to the environment, wildlife, and humans through several mechanisms, therefore, in One Health (a holistic framework that addresses the complex interconnections among animals, human, and environmental health). Physically, large plastic waste can cause entanglement, trapping animals and hindering their movement, which can affect their feeding or survival. Both macroplastics and MPs can be ingested, leading to blockages and injuries in digestive systems, and subsequent potentially adverse impacts on the health and survival of organisms. At the nanoscale, due to their small sizes, nanoplastics can penetrate cellular membranes, causing cellular damage and disrupting critical biological functions<sup>27</sup>. MPs also act as vectors for pollutants<sup>28</sup>. They can have sorbed toxic chemical contaminants, including antibacterial agents, onto their surfaces during environmental transport<sup>29-30</sup>. Once deposited, these pollutants may desorb, introducing toxic substances into previously pristine environments. MPs also leach additives such as flame retardants, plasticizers, and UV stabilizers, which are incorporated during plastic manufacturing<sup>31</sup>. These additives, once released, can pose additional risks to native organisms by disrupting local ecosystems. Another concern is the role of MPs as microbial vectors. MPs can transport microorganisms, including invasive or pathogenic species attached to their surfaces $^{32-33}$ . This can facilitate the introduction of new microbial species into fragile ecosystems, with potentially severe consequences for local biodiversity and ecosystem function. In a broader scale, plastic pollution contributes to climate change through several mechanisms<sup>34</sup>. For instance, the slow degradation of plastics releases greenhouse gases such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>)<sup>35</sup>. With approximately 8% of global oil production allocated to plastic manufacturing, the cumulative degradation of these materials represents a non-negligible source of greenhouse gas emissions<sup>36</sup>. In aquatic systems, MPs may disturb the biological carbon pump, a key process in oceanic carbon sequestration, and in terrestrial environments, they may alter soil respiration rates, further contributing to the carbon cycle's imbalance<sup>34</sup>. Furthermore, small plastics may influence atmospheric ice nucleation and, if they were present in sufficiently high concentrations, could impact cloud formation and local climate patterns<sup>37–38</sup>. In this context, airborne MPs could play a key role by influencing atmospheric processes, acting as vectors for microorganisms, or causing physical impacts on animals and humans.


### 2. The role of the atmosphere: Airborne plastic wastes

Recently, research focuses on the plastic cycle, including the mechanisms governing its transport between environmental compartments (Fig. 1) $^{39-42}$ . Among these compartments, the atmosphere has recently emerged as a potentially critical pathway. Although atmospheric plastics were only discovered in 2015<sup>20</sup>, growing evidence suggests that this compartment could play a significant role in the global distribution of plastic waste, especially MPs<sup>43</sup>. Atmospheric transport enables the deposition of MPs over vast distances, reaching remote areas such as polar regions and high-altitude environments<sup>21,44</sup>. Understanding the atmospheric contribution to the plastic cycle is crucial, as it facilitates the transfer of plastic waste between compartments while influencing its sources, transport, fate, and impacts on the environment, wildlife, and human health.

#### 2.1. Sources

Atmospheric MPs originate from a wide range of sources. In urban areas, MPs are released from synthetic fibers due to washing, drying, and general wear of textiles<sup>45–46</sup>. For instance, it has been estimated that a single 6 kg load of acrylic fabric in a domestic washing machine releases approximately 700,000 fibers<sup>47</sup>, while mechanical drying of synthetic textiles contributes to MP emissions in indoor environments<sup>48</sup>. Industrial activities could also represent a significant contributor to airborne MPs, releasing large amounts of particles through the manufacturing, recycling, and incomplete incineration of plastic products<sup>45,46,49</sup>. Other sources include the weathering and abrasion of the painted surface (paints contains binders that are usually made of plastic polymers) and wind erosion of landfills, all of which may contribute to the release of airborne MPs<sup>45</sup>.Transport-related emissions are another significant factor, with tire wear, brake pad abrasion, and road dust accounting for a substantial proportion of atmospheric MPs, especially in densely populated and high-traffic regions $^{49-51}$ .

In agricultural settings, practices such as the use of plastic mulch films, greenhouse covers, irrigation wa-



**Figure 1:** Sources, fate and impacts of atmospheric microplastics.

ter, and the application of sewage sludge as fertilizer contribute to MPs entering the atmosphere through wind erosion, mechanical degradation, and other farming activities 45,46,49,51,52. Furthermore, plants can also act as both a sink and a source of airborne MPs, which can temporarily adhere to leaves (and subsequently released), with measured abundances ranging from 0.06 to 25 items/cm<sup>2</sup> 53-56. This adherence varies depending on plant leaf micromorphological structures and MP accumulation displays diurnal fluctuations<sup>53</sup>. Once deposited, MPs may be resuspended into the atmosphere by wind or transferred to other compartments when leaves fall or are washed away by runoff<sup>55,57</sup>. Also, the ocean acts as a source of MPs through processes such as sea spray<sup>58–60</sup>, where bubble bursting and wave action transfer MPs from the surface of the water into the atmosphere, particularly in coastal regions<sup>46</sup>. In remote areas, tourism, recreational activities and long-range atmospheric transport of small MPs may also introduce MPs into the air.

#### 2.2. Transport

Different processes significantly contribute to suspension, horizontal transport, deposition and even resuspension of MPs. Particles that have settled on surfaces such as soil, vegetation, or sand can be reintroduced into the atmosphere by wind or anthropogenic activities (e.g., agriculture) and those present in the oceans can be resuspended by sea surface spray wave breaking 45,49,55. This dynamic interplay gives

rise to complexity of atmospheric transport of MPs. The transport of atmospheric MPs in the environment remains poorly characterized and highly variable. It seems to depend on the size, shape, length and density of the MP<sup>45,61–63</sup>, as well as meteorological parameters such as wind speed, wind direction, precipitation, humidity and air temperature<sup>44,45,50,61</sup>. Although in the case of small fractions, some of these parameters (for instance, the relatively high density of some small fibers of polyethylene terephthalate) does not seem to prevent their resuspension from the ground to the atmosphere via vertical winds<sup>64</sup>.

Despite its importance, only a limited number of studies have evaluated the transport pathways or trajectories of MPs in the atmosphere. Most of these studies have employed the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT)<sup>45</sup>. Initial studies on atmospheric MP transport demonstrated that air masses transported MPs over distances of approximately 100 km<sup>61,65</sup> and that no significant differences were observed in the transport fluxes of fibers and fragments, at least in urban environments<sup>64</sup>. Recent studies suggest that MPs can even be transported over larger distances (hundreds of kilometers) than previously expected<sup>44</sup>. However, further research is urgently needed to better understand the sources, transport mechanisms, and fate of atmospheric airborne MPs. Well-known atmospheric models (e.g., LAGRANTO, FLEXPART, CESM or MILORD), which are widely used to model the transport of atmospheric pollutants, could be used for these purposes 45,61.

Table 1. Summary of selected studies on MPs in the atmosphere.

| Reference                    | 0/I | Place                                                                    | Identification | V (m <sup>3</sup> ) | items/m³                                 | Filter                                  | Size (µm)                               | Morphology                   | Composition                                                                                                                 |
|------------------------------|-----|--------------------------------------------------------------------------|----------------|---------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| Liu et al. <sup>67</sup>     | 0   | East China Normal<br>University                                          | μFTIR          | 72-144              | 0.06±0.01                                | Glass fiber 1.60 µm                     | 12-2191                                 | Fibers 43%;<br>fragments 48% | PET (51%), EP (19%), PE (12%); cellulose not mentioned                                                                      |
| Liu et al. <sup>68</sup>     | 0   | West Pacific Ocean                                                       | µFTIR          | n.a.                | 0-1.37<br>(0.06±0.16<br>average)         | Glass fiber 1.60 µm                     | 16-2087                                 | Fibres 42-58%                | PET (57%), EP (10%), PE-PP (6%); cellulose (24%)                                                                            |
| Liu et al. <sup>64</sup>     | 0   | Shanghai                                                                 | μFTIR          | 6                   | 0-4.18 (average<br>1.42±1.42)            | Glass fiber 1.60 µm                     | 23-9555                                 | Fibres 67%;<br>fragments 33% | PET, PE, and PES (46% altogether); cellulose $(49\%)$                                                                       |
| ł                            | 0   | 10 km from Paris city<br>center                                          | μFTIR          | 2-5                 | 0.3-1.5 (median 0.9 only fibers)         | Glass fiber 1.60 μm                     | 50-1650                                 | Only fibers                  | n.a.                                                                                                                        |
| Dris et al. <sup>75</sup>    | ı   | Two private apartments and one office                                    | μFTIR          | 2-5                 | 0.4-59.4<br>(median 5.4<br>only fibers)  | Glass fiber 1.60 μm                     | 50-3250                                 | Only fibers                  | Cellulose (67%), synthetic (33%)                                                                                            |
|                              | I   | Islamabad University<br>Campus                                           | μRaman         | 8.64                | 4.34±1.93                                | Whatman's quartz<br>filter paper 1.2 µm | 2.7-938 (mean<br>144)                   | Fibers 57.6%                 | PET (52.2%), PE (22.2%), and PP (10%); cellulose not mentioned                                                              |
| Sharat-Din et al.            | 0   | Islamabad University<br>Campus                                           | μRaman         | 23.0                | 0.93±0.32                                | Whatman's quartz<br>filter paper 1.2 µm | 4.1-893.2<br>(mean 87.8)                | Fibers 66.3%                 | PET (42.2%), PE (30.0%), PS (14.4%); cellulose not mentioned                                                                |
| Maurizi et al. <sup>88</sup> | н   | Meeting room,<br>workshop, and two<br>apartments in Aalborg<br>(Denmark) | μRaman         | 2.9                 | 58-684 (median<br>212)                   | 1 μm pore                               | Approx. 45% in the 1-5 μm range         | Fragments 99.4%, fibers 0.6% | PA (21%), PV (polyvinyl polymers, 18%), PE (16%), PS (11%), and PEST (8%); most non-plastic particles were cotton-cellulose |
| Ding et al. <sup>89</sup>    | 0   | Northwestern Pacific<br>Ocean                                            | μFTIR          | 1512                | 0.0046-0.064<br>(average<br>0.027±0.018) | Glass fiber filters<br>1.60 µm          | 10-4556<br>(average 853,<br>median 645) | Fibers 88-100%               | Rayon (63%), PET (23%), cellophane, PE, PES, PVC-PVA copolymer, and others                                                  |
| Choi et al <sup>90</sup>     | Ι   | Residential houses in<br>Seoul                                           | $\mu$ FTIR     | 20.16               | $0.49-6.64$ $(3.02\pm1.77)$              | CN membrane<br>filters 5 µm             | 20.1-6801<br>(166 average)              | Fibers 10.2%                 | PE (40%), PP (24.6%), PES (13.6 %)                                                                                          |
|                              | 0   | Rooftop in Seoul                                                         | μFTIR          | 20.16               | $0.45 - 5.16$ $(1.96 \pm 1.65)$          | CN membrane<br>filters 5 µm             | 20.3-4497 (116<br>average)              | Fibers 3.6%                  | PE (34.7%), PP (33.3%), PA (10.6%)                                                                                          |
| Perera et al. <sup>91</sup>  | 0   | Different sites in Sri<br>Lanka                                          | μFTIR          | 10                  | 0.01-0.23                                | Stainless-steel 1 µm                    | Mostly in the<br>100-1900 µm<br>range   | Fibres 98%                   | Natural (59%), semisynthetic (29%), synthetic (12%)                                                                         |
|                              | I   | Indoor places in Sri<br>Lanka                                            | μFTIR          | 10                  | 0.13-0.93                                | Stainless-steel 1 µm                    | Most<br>abundant<br>class 100-300       | Fibers 98%                   | Semisynthetic 70%, synthetic 16%, natural 13%                                                                               |
| Abbasi et al. <sup>92</sup>  | 0   | City of Ahvaz, Iran                                                      | μRaman         | 1872                | 0.002-0.017                              | Glass fiber 1.6 µm                      | 75% < 1000<br>µm                        | Fibres 100%                  | PET, PA and PP                                                                                                              |
| Dong et al. <sup>93</sup>    | 0   | Campus of the Lhasa,<br>Tibet                                            | $\mu$ FTIR     | 5-300               | 0.15-0.63                                | Glass fiber 1 $\mu$ m, and PC 1 $\mu$ m | 10-100 (40%)                            | Fibres 44-54%                | Cellophane comprises the majority particles; other polymers PES and PA                                                      |

Table 1. Summary of selected studies on MPs in the atmosphere (cont.).

| Reference                            | 1/0 | Place                                                                                                          | Identification                           | V (m <sup>3</sup> ) | items/m <sup>3</sup> | Filter                                         | Size (µm)                                                  | Morphology                                                                     | Composition                                                                                                                                                                                       |
|--------------------------------------|-----|----------------------------------------------------------------------------------------------------------------|------------------------------------------|---------------------|----------------------|------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wang et al. <sup>69</sup>            | 0   | Atmosphere over the<br>Pearl River Estuary,<br>South China Sea,<br>East Indian Ocean                           | µFTIR                                    | 53-259              | 0-0.077              | Glass microfiber<br>filters 1.6 µm             | 59-2252                                                    | Fibres 88.9%,<br>fragments 11.1%                                               | Plastics (21.05%): PET (50%), PP (22%) and others (28%) including PEVA, PET, PEP, PAN-AA, PR and PA; artificial fibers (4.2%): rayon and cellophane; natural fibers (76.8%): cotton and cellulose |
| Vianello et al. <sup>94</sup>        | п   | Indoor air of<br>apartments (Aarhus,<br>Denmark)                                                               | FPA-µFTIR                                | 16.8 per<br>sample  | 1.7-16.2             | Silver membranes<br>0.8 µm                     | 4-398                                                      | Fibers 13%,<br>fragments 87%                                                   | PES (81%), PE (6%), PA (5%), PP (2%); other polymers (6%): PS, ACR, PU, EPDM, PVAC, EVA, EP, PR, CA, PLA, PC, PU, AR                                                                              |
| Syafei et al. <sup>95</sup>          | 0   | Streets in Surabaya,<br>Indonesia                                                                              | FTIR                                     | 0.64                | 55.9-75.0            | Glass fibre 1.6 µm                             | 1000-1500                                                  | Fibers 97.5%,<br>fragments 1.27%,<br>films 1.27 %                              | PES (including PET, 41.7 %); cellophane 58.3%                                                                                                                                                     |
| O'Brien et al. <sup>48</sup>         | ы   | Near domestic laundry<br>dryers                                                                                | FTIR and<br>Pyr-GC/MS                    | 18.3                | 1.6±1.8              | Glass fibrer 1.6 µm                            | 19-3948                                                    | Fibers 100%                                                                    | PES (100%)                                                                                                                                                                                        |
| Abbasi et al.77                      | 0   | Street dusts in<br>Asaluyeh, Iran                                                                              | Fluorescence,<br>polarized<br>light, SEM | 24                  | 0.3-1.1              | PTFE filter papers 2<br>µm                     | 2-100                                                      | MPs: Spherules (74%), films (14%); microrubbers: fragments (61%), fibers (36%) | MPs (not differentiated) and microrubbers                                                                                                                                                         |
| 90 -                                 | 0   | Wenzhou, China                                                                                                 | μFTIR                                    | 63                  | 189±85               | Glass fiber 0.70 µm                            | 5-5000                                                     | Fragments<br>89.7-96.3%)                                                       | PE (26.8%), PS (17.8%), PES (17.2%)                                                                                                                                                               |
| Liao et al. ~                        | п   | Wenzhou, China                                                                                                 | μFTIR                                    | 39                  | 1583±1180            | Glass fiber 0.70 µm                            | 5-5000                                                     | Fragments<br>83.5-94.2%                                                        | PET (28.4%), PA (20.54%), PP (16.3%)                                                                                                                                                              |
| Zhu et al. $^{97}$                   | 0   | Five Megacities of<br>Northern and<br>Southeast China<br>(Beijing, Tianjin,<br>Hangzhou, Shanghai,<br>Nanjing) | μFTIR                                    | 75                  | 104-650              | Glass fiber 0.70 µm                            | 5.9-1475                                                   | Fragments 88.2%                                                                | PE (26.6%), PET (16.0%), PS (14.9%),<br>PP (13.6%), PA (7.3%), PVC (6.6%)                                                                                                                         |
| Akhbarizadeh et<br>al. <sup>98</sup> | 0   | Bushehr Port, Iran                                                                                             | Fluorescence<br>analysis and<br>µRaman   | 2160                | 0-14.2               | Quartz fiber 2.5 µm                            | <2.5-1000                                                  | Fragments 63%,<br>fibers 27%, films<br>10%                                     | PET (33%), PE (29%), PA (22%), PS (10%), PP (6%)                                                                                                                                                  |
|                                      | 0   | Outdood nail salons in<br>Taiwan                                                                               | FTIR                                     | 5.08                | 28±24                | Silver membrane 0.2<br>µm                      | <50-100                                                    | Fragments 99%,<br>fibers 1%                                                    | ACR (40%), rubber (13%), PVC (12%), PU (2%), PEI (2%), PVA (3%), others (28%)                                                                                                                     |
| Chen et al.",                        | I   | Inside nail salons in<br>Taiwan                                                                                | FTIR                                     | 5.43                | 46±55                | Silver membrane 0.2<br>µm                      | <50-200                                                    | Fragments 99%,<br>fibers 1%                                                    | ACR (27%), Rubber (21%), PU (13%), PVC (9%), PVA (5%), PEI (5%), PCL (6%), other (14%)                                                                                                            |
| Ferrero et al. <sup>100</sup>        | 0   | Poland, Baltic Sea<br>and Gotland<br>Island, Sweden                                                            | µRaman and<br>FTIR                       | n.a.                | 0-301                | n.a. (Glass<br>microscope slide<br>substrates) | Average<br>length and<br>width of<br>427±59 and<br>17±2 µm | Fibers 98%,<br>fragments 2%                                                    | PC (35.5%), PE (11.8%), PET (5.3%), PU (5.3%),<br>PA (2.6%)                                                                                                                                       |

Table 1. Summary of selected studies on MPs in the atmosphere (cont.).

| Jiang et al. <sup>107</sup> O                                      | Xie et al. 100 I                         | 0                                                                              | Xumiao et al. <sup>105</sup> I                                   | Allen et al. <sup>58</sup> O | Torres-Agullo et I l<br>al. <sup>104</sup>    | I                                                                                  | Cactor et al 103                                                                                    | Chang et al. <sup>102</sup> O                                                             | Allen et al. <sup>82</sup> O                          | González-Pleiter O ]<br>et al. <sup>21</sup>                                     | Kernchen et al. <sup>101</sup> O                           | Reference O/I        |  |
|--------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|----------------------|--|
| Harbin, China                                                      | Shanghai, China                          | Shanghai, China                                                                | Aveiro, Portugal                                                 | French Atlantic Sea          | Barcelona, Spain                              | California, USA                                                                    | California, USA                                                                                     | Urban forest, business center, commercial areas, and a public transportation hub in Seoul | Pic du Midi, France                                   | Rural and urban areas<br>in Spain                                                | Weser River Catchment in Northwest and Central Germany     | Place                |  |
| Raman                                                              | Raman                                    | Raman                                                                          | Fluorescence<br>microscopy                                       | μRaman                       | μFTIR                                         | μFTIR or<br>μRaman                                                                 | μFTIR or<br>μRaman                                                                                  | µFTIR                                                                                     | μRaman                                                | μFTIR                                                                            | Raman<br>(active<br>sampling<br>only)                      | Identification       |  |
| 0.14                                                               | 10                                       | 10                                                                             | 7.2                                                              | 18 and<br>6401               | n.a.                                          | 4,615                                                                              | 4,615                                                                                               | 24.0±0.2                                                                                  | 7880                                                  | 8.78                                                                             | 0.56-1.62                                                  | V (m <sup>3</sup> )  |  |
| 12.8±5.5 and<br>162.4 ± 44.6                                       | 15.6-93.3                                | 15.9-38.5                                                                      | 0.6-3.9                                                          | 0.06±0.05                    | 4.2±1.6 and<br>17.3±2.4                       | $12.8 \pm 4.0$                                                                     | 12.0±3.4                                                                                            | 0.33-1.21                                                                                 | 0.09-0.66                                             | 1.5-13.9                                                                         | 37-121 (active<br>sampling only)                           | items/m <sup>3</sup> |  |
| PTFE filter 0.45 µm                                                | Alumina 0.22 µm                          | Alumina 0.22 µm                                                                | Quartz fiber 2.2 µm                                              | Quartz filters               | Nylon net 20 μm                               | Glass fiber 1.60 μm                                                                | Glass fiber 1.60 μm                                                                                 | CN filter 0.45 μm                                                                         | Quartz fiber 2.2 µm                                   | Stainless steel 25<br>µm                                                         | Aluminum oxide<br>0.2 μm                                   | Filter               |  |
| 6.8-1665                                                           | 2.40-2181                                | 2.40-2181                                                                      | MPs: 9.6-21,<br>synthetic<br>fibers:<br>37-10822                 | 5-140                        | 20-23,565                                     | 20-8961                                                                            | 20-8961                                                                                             | 24.4-2278                                                                                 | 3.5-53                                                | 42-1709                                                                          | 4.1-33 (active<br>sampling<br>only)                        | Size (µm)            |  |
| Fibers 69.4%), fragments and spheres                               | Fragments >85%, beads and fibers         | Fragments >85%, beads and fibers                                               | MPs: fragments 71.4%, spheres 28.6%. Synthetic fibers also found | Films, fiber,<br>fragments   | Fibers 53±24% and 73±9%), fragments (balance) | Fragments and fibers                                                               | Fragments and fibers                                                                                | Fragments 87.4%), fibers 12.6 %                                                           | Fragments 70%, and 30 %                               | Rural: fibers (84%) and fragments (16%); urban: fragments (67%) and fibers (33%) | Fragments 79%,<br>spheres 21%<br>(active sampling<br>only) | Morphology           |  |
| PES (43%), PE (16%), PA (12%), PP (9.0%), PS (11%), and PVC (5.8%) | phenolic resins (9.1%) and cotton (1.4%) | PE (73.8%), PES (9.2%), PVC (3.1%), PP (0.57%), PU (0.34%) and rubber (0.18%); | n.a.                                                             | PVC, PS, PP, PET, PE         | PES (48%), PA (51%) and PP (1%)               | PS (n=4), PET (n=3), PVC-heat stabilizer (n=7) polymeric additives (n=6), PE (n=2) | PET (n=1), PS (n=1), Acrylic (n=1), PVC-heat stabilizer (n=12), PS (n=2), polymeric additives (n=2) | PP (54%), PET (11%), PE, PEVA, PA, PU, ACR and others                                     | PE (44%), PS (18%), PVC (15%), PET (14%) and PP (10%) | PES, ACR, PA, PU, PS, and polyolefins                                            | PE (78%), PMMA, PS, EVAc, PP, PVC, PET,<br>PHB             | Composition          |  |

I: indoor; O: outdoor; n.a.: not applicable or not specified; ACR: acrylic polymers; AR: alkyd resins; CA: cellulose acetate; CN: cellulose nitrate; EP: epoxy resin; EPDM: ethylene-propylene-diene-monomer; EVA: ethylene vinyl acetate; EVAc: ethylene vinyl acetate copolymer; FPA: focal Plane Array; PA: polyamide; PAN-AA: poly(acrylonitrile-co-acrylic acid); PC: polycarbonate; terephthalate; PEVA: polyethylene-co-vinyl acetate; PHB: polyhydroxybutyrate; PLA: polylactic acid; PP: polypropylene; PR: phenoxy resin; PS: polystyrene; PTFE: polytetrafluoroethylene; PU: electron microscope; μFTIR: Fourier-transform infrared microspectroscopy; μRaman: Micro-Raman spectroscopy. polyurethane; PV: polyvinyl polymers; PVA: polyvinyl alcohol; PVAC: polyvinyl acetate; PVC: polyvinyl chloride; Pyr-GC/MS: pyrolysis-gas chromatography-mass spectrometry; SEM: scanning PCL: polycaprolactone; PE: polyethylene; PEI: polyethylenimine; PEP: polyethylene-co-propylene; PES: polyester; PEST: poly-butylene-terephthalate, poly-ethylene-terephthalate; PET: polyethylene

### 2.3. Fate: Spatial distribution, concentration, characteristics and types

Environment. Regarding the occurrence and spatial distribution of MPs the atmosphere remains one of the least studied environmental compartments. Until recently, when the first direct evidence of MPs in the atmosphere was obtained through air sampling above ground level (within and above the planetary boundary layer) most evidence of their presence in the atmosphere have been conducted near ground level from atmospheric deposition studies (passive methods) or air sampling using suspended particulate samplers or vacuum suction devices (active methods)<sup>64,66–71</sup>. Recently, the presence of MPs in rural and urban areas has been extensively studied. Table 1 summarizes the characteristics of MPs in the atmosphere. MPs have been detected in rural and sub-rural areas, such as Nottingham, (England),72 Paris (France)73 and Hamburg (Germany)<sup>72-74</sup>. Regarding urban regions, MPs have been identified in cities like Paris (France), Hamburg (Germany), Adapazarı (Turkey), Asaluyeh (Iran) and Dongguan and Yantai (China), Shanghai, as well as in several cities in England, Ireland, and Spain<sup>20,66,73–81</sup>. Remote areas including the French Pyrenees<sup>82</sup>, the Tibetan Plateau and the air on the Pacific Ocean, South China Sea, East Indian Ocean have shown the presence of MPs. Most recently, MPs were also identified in polar regions 67,69,70,82-86.

Regarding its abundance, studies using suspended particulate samplers have reported atmospheric MP concentrations ranging from 0 to hundreds of MPs/m<sup>3</sup> (Table 1). Atmospheric deposition studies have indicated deposition rates ranging from 0 to thousands of MPs m<sup>-2</sup> day<sup>-1</sup> 81-108. Sampling performed several hundred meters above ground level revealed MP concentrations between 1.5 MPs m<sup>-3</sup> and  $13.9 \text{ MPs m}^{-2 21}$ . Fibers appear to be the dominant shape of MPs detected, followed by fragments and, to a lesser extent, microbeads, films, foams, and granules<sup>45,46,49-51</sup>. Atmospheric MPs ranged in size from >1  $\mu$ m to <5000  $\mu$ m<sup>20,21</sup>. Identification methods that are commonly used, FTIR and Raman spectroscopy and mass spectrometry revealed that polyester (PES) seems to be the most abundant atmospheric MP, particularly among fibers 45,46,49-51. PES accounted for an exceptionally high percentage of MPs in certain locations, including the air over the Pacific Ocean the Pacific Ocean<sup>68</sup>. Other detected MP types include polyethylene (PE), polyacrylonitrile (PAN), and poly(N-methyl acrylamide) (PAM). To a lesser extent, MPs composed of polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), poly(vinyl acetate) (PVA), rayon, epoxy resin, alkyd resin, phenoxy resin, and copolymers such as polyethylenepolypropylene have also been identified 45,46,49-51.

MPs have been identified in the respiratory systems of a wide range of wild, domestic, marine, and terrestrial animals (Table 2). Numerous studies have reported the presence of MPs in the respiratory tissues of various wild bird species, including rock doves (Columba livia), barn swallows (Hirundo rustica), common buzzards (Buteo buteo), black kites (Milvus migrans), Eurasian sparrowhawks (Accipiter nisus), northern goshawks (Accipiter gentilis), common house martins (Delichon urbicum), common swifts (Apus apus) and white-breasted kingfishers (Halcyon smyrnensis) <sup>109–112</sup>. In terrestrial animals, MPs have been detected in the lung tissue of domestic pigs, as well as in dogs and cats 113-114. In the marine environment, MPs have even been identified in the exhaled air of bottlenose dolphins (*Tursiops truncatus*)<sup>115</sup>.

The concentration of MPs in birds has been reported to range from 0.13 to 0.40 MPs/ $g^{111}$ . In domestic pigs, MP concentrations in lung tissues were measured at 180 particles/g for adults and 97 particles/g for fetal pigs. Interestingly, MPs found in the lungs of fetal pigs are thought to have been transported through the placenta from MPs inhaled or ingested by the mother<sup>113</sup>. In positive samples from dogs and cats, MP concentrations in lung tissues ranged between 4 and 20.5 MPs/ $g^{114}$ . For other species, the concentration of MPs has not yet been quantified.

Various MP morphologies have been identified in animal respiratory systems, including fragments, fibers, and films<sup>110–112,115</sup>. Among these, fibers are consistently the most prevalent morphology, particularly in the lungs of pigs and birds, aligning with the dominance of fibers among airborne MPs<sup>111-113</sup>. In birds, MP sizes ranged from 28 μm to 2157 μm<sup>110,112</sup>. In cetaceans, particles were all smaller than 500 µm, while fibers measured less than 1.70 mm<sup>115</sup>. In pigs, MP sizes varied between 20.3 µm and 1370 µm<sup>113</sup>. In cats and dogs, MPs ranged in size from 5.5 µm to 8.1 µm<sup>114</sup>. The polymers identified in bird lung samples included PP, PE, ethylene-vinyl acetate (EVA), PES, and  $acrylic^{110-112}$ . In cetaceans, the most prevalent polymers were polyethylene terephthalate (PET), PE, PA, polybutylene terephthalate (PBT), and polymethyl methacrylate (PMMA)<sup>115</sup>. In adult pigs, the identified polymers included PA, PP, PE, PVC, polycarbonate (PC), and PET, while in foetal pigs, the detected polymers were PC, PP, PVC, PA, PE, and polyurethane (PU). Notably, PU was absent in adult pig lungs<sup>113</sup>. In cats and dogs, PP and PET were the main polymers detected <sup>114</sup>.

Table 2. Summary of selected studies on MPs in wildlife and domestic animals.

| Fibers (58%), 0.24-1704 films (42%)                          |
|--------------------------------------------------------------|
| 0-20.5 n.a.c 5.5-8.1                                         |
| 97 Fibres, fragments 20.3-501<br>and irregular<br>shapes     |
| 6 Fibres 139-438                                             |
| 180 20.3-916                                                 |
| 12 Fibers 115-1370                                           |
| n.a. <sup>c</sup> Fibers 120-2157                            |
| 0.13-0.4 Mostly fibers. 239-255 (median values) One fragment |
| 0-25.6 Fragments 69-71 (calculated)                          |
| (calculated) Fragments 28.0-31.8 $^{b}$                      |
| Not specified Not specified Not specified                    |
| MPs/specimen MPs/g of lung Morphology Size (μm)              |
|                                                              |

<sup>&</sup>lt;sup>a</sup>: W, wild; D, domestic. <sup>b</sup>: No MPs found. <sup>c</sup>: n.a., not applicable or not specified. <sup>d</sup>: PLM, polarized light microscopy. <sup>d</sup>: LDIR, laser direct infrared imaging. ATR: attenuated total reflectance. μFTIR: micro Fourier transform infrared spectroscopy. μRaman: Micro-Raman Spectroscopy. EVA: ethylene vinyl acetate; PA: polyamide; PBT: polybutylene terephthalate; PC: polycarbonate; PE: polyethylene; PES: polyester; PET: polyethylene terephthalate; PMMA: polymethyl methacrylate; PP: polypropylene; PS: polystyrene; PU: polyurethane; PVC: polyvinyl chloride.

Humans. Humans are continuously exposed to airborne MPs, with inhalation rates estimated to reach up to 174 MPs  $kg_{bw}^{-1}$  day<sup>-1</sup> 116. Exposure to airborne MPs is influenced by factors such as geographical location, age, and occupation. Individuals from urban areas typically exhibit higher MP concentrations due to increased time spent indoors, where MP levels tend to surpass those in outdoor environments<sup>16</sup> Certain occupational settings exposure to airborne MPs lead to increased deposition in the respiratory tract $^{117-118}$ . Furthermore, older individuals are more likely to accumulate higher MP concentrations in their respiratory systems, as fibers tend to persist and accumulate with  ${\rm age^{119-120}}.$  Once inhaled, MPs can distribute throughout the respiratory system potentially accumulating in different parts 121-122. MPs have been detected from the upper airways (nose, mouth, and throat) to the lower respiratory tract, including the lungs<sup>121,123</sup>. MP exposure via inhalation can be assessed through various biological samples including saliva, bronchoalveolar lavage fluid (BALF), sputum, pleural fluid, lung tissue biopsies, or cadaver autopsies<sup>118,119</sup>, as well as, using experimental setups, such as breathing thermal manikins, for indoor air sampling<sup>124</sup>. MP concentrations in BALF range from 0.2 to 140.9 MPs/g<sup>125,126</sup>, while lung tissue concentrations vary between 0.69  $\pm$ 0.84 MPs/g and  $14.2 \pm 14.6 \text{ MPs/g}^{123,127}$ .

A variety of MP morphologies have been identified in the human respiratory system, including fibers, fragments, spheres, and films. Particle dimensions range from 1.6  $\mu m$  to 4760  $\mu m$   $^{16,119,123,125}$ . MP deposition within the respiratory system is influenced by particle size, density, and shape. Larger particles are typically cleared by the mucociliary mechanism in the upper airways, whereas smaller and lighter MPs can bypass these defenses and deposit in deeper regions of the lungs, including terminal bronchioles, alveolar ducts, and alveoli<sup>120,124</sup>. Interestingly, fiber width, rather than length, determines whether and where fibers deposit within the respiratory tract<sup>16,120,128</sup>. Once deposited in the lungs, MPs may persist for extended periods or translocate to other tissues or organs<sup>129</sup> Fiber persistence increases with length but decreases with higher dissolution or fragmentation rates 119,130. Several polymer types have been identified in the human respiratory system, including high- and low-density polyethylene (HDPE, LDPE), PA, polyesters (e.g., PET), PU, PP, polystyrene (PS), PVC, and synthetic copolymers such as polystyrene-co-polyvinyl chloride<sup>16,123,124</sup>.

#### 2.4. Impacts

Airborne MPs may pose a risk to environmental, animal, and human health due to both the effect

of MPs themselves and the potential release of microorganisms or pollutants previously attached to their surfaces. The impacts of MPs are influenced by several factors, including their size, shape, density, concentration, polymer type, chemical leachates, environmental adsorbents, and the level and duration of exposure<sup>121–123</sup>. However, more research is needed to clarify their impacts, as there is still limited literature in this regard.

**Atmospheric processes**. The presence of the MPs in the atmosphere above ground level has the potential to influence atmospheric processes, particularly through their potential capacity to act as ice nucleating particles 37,38,131,132. A recent investigation explored the ice-nucleating activity of four common MP types (LDPE, PP, PVC and PET) under pristine and aged conditions including exposure to UV radiation, ozone, sulfuric acid, and ammonium sulphate<sup>38</sup>. All tested MPs exhibited some degree of ice-nucleating activity, although the effects of aging varied markedly among polymer types. For example, while the aging of LDPE, PP, and PET generally resulted in either unchanged or reduced ice nucleating activity compared to the pristine MPs, LDPE aged with ammonium sulphate displayed a significantly enhanced ice nucleating activity. In contrast, PVC showed either no change or an increase in ice nucleation activity after most aging treatments. Notably, some MPs demonstrated ice nucleating activity comparable to mineral dust particles (kaolinite, a well-known natural ice nucleator in the atmosphere). Furthermore, PP needles (commercially produced) and fibers generated from the breakdown of PP and PET in the laboratory setting were frozen heterogeneously with median freezing temperatures between -20.9 °C and -23.3 °C131. These MPs exhibited a number of ice nucleation sites per surface area comparable to volcanic ash and fungal spores. Aging processes, such as exposure to ozone or photooxidation treatments, were found to reduce the ice nucleation activity of PP needles and PET fibers. Additionally, MP fibers from clothing textiles were identified as effective ice nucleators, probably due to biological particles (i.e., cells) attached to their surfaces and enclosed in an extracellular polysaccharide<sup>132</sup>. Treatments with lysozyme and hydrogen peroxide were observed to strip these fibers of their ice nucleation properties, highlighting the role of biological particles in this activity. PE MPs have also been shown to induce heterogeneous ice nucleation via immersion freezing under atmospherically relevant conditions, with their ice nucleation ability being intrinsically linked to their underlying chemical composition.37

In general, many atmospheric particles capable of acting as ice nucleators impact the microphysical and radiative properties of clouds, influencing the Earth's radiative balance<sup>132</sup>. These particles can also influence the lifetimes and optical properties of clouds, with implications for the cloud albedo effect<sup>131</sup>. MPs, with their heterogeneous physicochemical properties, introduce uncertainties into these processes. Recent freezing data indicate that MPs may facilitate ice formation within cloud droplets, a feature that could be integrated into atmospheric models. The potential for MPs to nucleate ice and subsequently participate in precipitation processes may also influence their long-range transport and global distribution<sup>37</sup> Furthermore, MP fibers carrying biological particles warrant special consideration in cloud modelling due to their potential impacts on cloud ice, droplet formation, and precipitation dynamics<sup>132</sup>.

However, caution is necessary when extrapolating laboratory findings to larger atmospheric systems. These results emphasize the need to links between MPs and atmospheric processes. For instance, the influence of MP morphology (e.g., fibers, films) or additives on ice nucleating activity remains poorly understood<sup>38</sup>. Additionally, field studies are essential to quantify atmospheric MP concentrations, lifetimes, and the impacts of aging processes on the ice nucleation efficiency of MPs and associated biological particles<sup>132</sup>. Further research is needed to determine whether increasing MPs levels in the atmosphere could significantly change any atmospheric processes.

Respiratory system damage. Airborne MPs are ubiquitous in outdoor and, particularly, indoor environments where humans are exposed to them daily. One of the most fundamental activities humans perform is breathing, which inevitably involves inhaling MPs (Section 2.3.1). The potential risks of airborne MPs to human health have been recognized since the 1980s<sup>117,133,134</sup>. An epidemiological study on workers exposed to PVC dust reported an association with reduced lung function, mild abnormalities in chest radiographs, and complaints of slight dyspnea<sup>133</sup>. Another study identified plastic fibers as potential agents contributing to lung cancer risk<sup>134</sup>. Workers in the nylon flocking industry were shown to have a substantially elevated risk of occupational interstitial lung disease, with a 48-fold or greater increase in the sex-adjusted incidence rate among a 165-member cohort<sup>117</sup>. Currently, it is well-established that certain occupational settings serve as significant sources of airborne MPs, posing substantial risks to worker health. Industries with high MP exposure levels include the synthetic textile sector, the flocking industry, and PVC manufacturing<sup>135</sup>. Other high-risk environments include facilities where plastic substrates are ground or drilled, waste management

and recycling facilities and extrusion-based 3D printing operations <sup>136,137</sup>. For instance, PC filaments and acrylonitrile butadiene styrene (ABS) have been detected in workplace air during industrial-scale additive manufacturing <sup>132</sup>. Additionally, occupations requiring frequent use of face masks or respirators may also lead to heightened MP exposure <sup>132</sup>. These findings highlight the need to assess respiratory risks in workers ,exposed to MPs during plastic product manufacturing and related industries <sup>137–139</sup>.

In addition to occupational exposures, numerous studies in laboratory conditions have shown that inhaling airborne MPs could increase the risk of developing lung diseases. Research conducted using human cell cultures, in vitro models, in vivo animal studies, and human subjects has revealed various adverse effects. Studies in human cells have shown that MP exposure can lead to morphological changes, altered metabolism, cytotoxicity, inflammation, inhibition of cell proliferation, DNA damage, and increased reactive oxygen species (ROS) production, contributing to oxidative stress<sup>121,121</sup>. In lung-related cell lines, PVC has been shown to induce cellular senescence via ROS production, while PS causes pulmonary cytotoxicity and inflammatory responses by promoting ROS accumulation, both of which increase the risk of lung diseases 122,140. In vivo studies have shown that inhalation of MPs leads to pro-inflammatory responses, granuloma formation, ROS-induced cellular senescence, alveolar destruction, and pulmonary fibrosis, with these effects being dose- and size-dependent 140,141. Associations have also been found between microfiber concentrations and radiological abnormalities, pathological microbial growth, and reduced lung function<sup>119</sup>. MPs have been implicated in the development of tumors, pulmonary ground-glass nodules, chronic obstructive pulmonary disease and interstitial lung disease<sup>117,120,122</sup>

Few studies have investigated its effects on animals beyond mammals, highlighting a significant gap in understanding its broader ecological impact. Lung tissues of chickens exposed to PS MPs showed upregulation of Bax/Bcl-2 expression and increased activity of the Caspase family, alongside elevated phosphorylation levels within MAPK signaling pathways (p38, ERK, and JNK), ultimately promoting apoptosis. Additionally, MPs activated the antioxidant defense system, but an imbalance in this system modulated the Caspase family and triggered the PTEN/PI3K/AKT pathways, initiating apoptosis and autophagy processes that collectively contributed to lung tissue damage in chickens<sup>142</sup>.

**Vector for microorganisms**. MPs can act as vectors for microorganisms, facilitating the spread of

microbial populations and enabling the colonization of new habitats. These particles are capable of transporting both non-pathogenic and pathogenic microorganisms, thereby posing potential risks to human and animal health. The surface properties of MPs enable the adsorption of nutrients and water, creating a nutrient-rich microenvironment conducive to microbial growth. Despite the increasing recognition of the presence of airborne MPs, only a limited number of studies have focused on microorganisms attached to these particles in the atmosphere 143–147.

A study has demonstrated that fibers colonized by viable microorganisms can be found at altitudes hundreds of meters above ground level<sup>145</sup>. At ground level, concentrations of airborne microorganisms, including bacteria and fungi, have been positively correlated with the presence of MPs<sup>107</sup>. Notably, the characteristics of airborne MPs and the pathogenicity of airborne bacterial communities exhibit significant positive correlations, particularly with MP size and the immune-mediated disease risks associated with atmospheric microbes. Among these, Sphingomonas has been identified as a potential key mediator<sup>143</sup>. Additionally, the abundance of certain bacterial phyla, such as Actinobacteria, has shown positive correlations with specific types of airborne MPs (i.e., PA, PET and PP) in indoor environments, where evidence further suggests that the abundance of airborne MPs is positively associated with the abundance of antibiotic resistance genes<sup>146</sup>. Airborne MPs have also been implicated in the spread of viruses; for example, suspended MPs have been positively correlated with the quantification of SARS-CoV-2 envelope genes<sup>147</sup>

#### 3. Conclusions

Taken together, the atmosphere remains the least studied environmental compartment in terms of the occurrence, spatial distribution, and consequences of MPs. Despite recent advancements, significant knowledge gaps persist, hindering our understanding of the full life cycle of airborne MPs, including their sources, transport mechanisms, environmental fates, and impacts. As this is an emerging field of research that has been active for less than a decade, the development of new methodologies and innovative approaches is essential to address the following unresolved challenges. First, global standardization of data collection protocols148 and analytical methods for suspended and deposited MPs in environment, humans<sup>149</sup> and animals as well as standardized elution protocols to evaluate microorganisms attached to airborne MPs<sup>150</sup>, are urgently needed to ensure consistency and comparability across studies and

regions. Second, a deeper understanding of ice nucleation processes involving airborne MPs is imperative, given their potential to influence cloud formation. Third, improvements of the atmospheric transport are necessary to incorporate long-range MP transport from lower altitudes, as well as resuspension processes from soil and water sources<sup>151</sup>. Addressing these research gaps is vital for advancing our understanding of atmospheric MPs and their broader implications for environmental and human health, particularly within the context of the "One Health" framework.

#### References

- 1. Stubbins A, Law KL, Muñoz SE, Bianchi TS, Zhu L. Plastics in the Earth system. Science 1979;2021(373):51–5.
- 2. OECD. Global plastics outlook: policy scenarios to 2060. 2022.
- 3. European Commission. Plastics, 2024. https://environment.ec.europa.eu/topics/ plastics\_en.
- 4. UNEP. Decisive fifth session of negotiations on global plastic pollution treaty. 2024.
- 5. Plastics Europe. Plastics-the fast facts 2024.
- Olatunji O. Re-envisioning plastics role in the global society: perspectives on food, urbanization, and environment. Springer, 2024.
- 7. Plastics Europe. Plastics-the Facts 2022.
- 8. Chamas A, Moon H, Zheng J, Qiu Y, Tabassum T, Jang JH, Abu-Omar M, Scott SL, Suh S. Degradation rates of plastics in the environment. ACS Sustain Chem Eng 2020;8:3494–511.
- Singh N, Walker TR. Plastic recycling: A panacea or environmental pollution problem. NPJ Mater Sustain 2024;2:17.
- Galgani F, Rangel-Buitrago N. White tides: The plastic nurdles problem. J Hazard Mater 2024; 470:134250.
- 11. Cottom JW, Cook E, Velis CA. A local-to-global emissions inventory of macroplastic pollution. Nature 2024;633:101–8.
- 12. Kenyon KW, Kridler E. Laysan albatrosses swallow indigestible matter. Auk 1969;86:339–43.
- 13. Carpenter EJ, Anderson SJ, Harvey GR, Miklas HP, Peck BB. Polystyrene spherules in coastal waters. Science 1979;1972(178):749–50.
- 14. Carpenter EJ,KLS JR.Plastics on the sargasso sea surface. Science 1972(175):1240-1.
- Eschenbacher WL, Kreiss K, Diane M, Pransky GS, Day B, Castellan RM. Nylon flockassociated interstitial lung disease. Am J Respir Crit Care Med 1999;159:2003–8.
- Amato-Lourenço LF, Carvalho-Oliveira R, Júnior GR, dos Santos-Galvão L, Ando RA, Mauad T.

- Presence of airborne microplastics in human lung tissue. J Hazard Mater 2021;416:126124.
- 17. Browne MA, Dissanayake A, Galloway TS, Lowe DM, Thompson RC. Ingested microscopic plastic translocates to the circulatory system of the mussel, *Mytilus edulis* (L.). Environ Sci Technol 2008;42:5026–31.
- 18. Rillig MC. Microplastic in terrestrial ecosystems and the soil? Environ Sci Technol 2012;46:6453-4.
- 19.. Obbard RW, Sadri S, Wong YQ, Khitun AA, Baker I, Thompson RC. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earths Future 2014;2:315–20.
- 20. Dris R, Gasperi J, Rocher V, Saad M, Renault N, Tassin B. Microplastic contamination in an urban area: a case study in Greater Paris. Environ Chem 2015;12:592-9.
- 21. González-Pleiter M, Edo C, Aguilera Á, Viúdez-Moreiras D, Pulido-Reyes G, GonzálezToril E, Osuna S, de Diego-Castilla G, Leganés F, Fernández-Piñas F, Rosal R. Occurrence and transport of microplastics sampled within and above the planetary boundary layer. Sci Total Environ 2021;761:143213.
- 22. Walker TR, Reid K, Arnould JPY, Croxall JP. Marine debris surveys at Bird Island, South Georgia 1990–1995. Mar Pollut Bull 1997;34:61–5.
- 23. Isobe A, Uchiyama-Matsumoto K, Uchida K, Tokai T. Microplastics in the Southern Ocean. Mar Pollut Bull 2017;114:623–6.
- 24. Napper IE, Davies BFR, Clifford H, Elvin S, Koldewey HJ, Mayewski PA, Miner KR, Potocki M, Elmore AC, Gajurel AP, Thompson RC. Reaching new heights in plastic pollution—preliminary findings of microplastics on Mount Everest. One Earth 2020;3:621–30.
- 25. Domínguez-Hernández C, Vega-Moreno D, Villanova-Solano C, HernándezSánchez C, Lambre ME, Hernández-Borges J. Characterization of pyroplastics from the North Atlantic. Mar Pollut Bull 2024;208:116960.
- 26. Rangel-Buitrago N, Galgani F, Neal WJ. The geological footprint of plastics. Sci Total Environ 2024;940:173693.
- Tamayo-Belda M, Pulido-Reyes G, Rosal R, Fernández-Piñas F. Nanoplastic toxicity towards freshwater organisms. Water Emerging Contaminants & Nanoplastics 2022;1:19.
- 28. Xia Y, Niu S,Yu J.Microplastics as vectors of organic pollutants in aquatic environment: a review on mechanisms, numerical models, and influencing factors. Sci Total Environ 2023;887:164008.

- Tumwesigye E, Nnadozie CF, Akamagwuna FC, Noundou XS, Nyakairu GW, Odume ON. Microplastics as vectors of chemical contaminants and biological agents in freshwater ecosystems: Current knowledge status and future perspectives. Environ Pollut 2023;330:121829.
- Jiménez-Skrzypek G, Domínguez-Hernández C, González-Sálamo J, HernándezBorges J. Assessment of multiclass organic pollutants in microplastics from beaches of Tenerife (Canary Islands, Spain). Microchem J 2024;207:112172.
- 31. Li Y, Liu C, Yang H, He W, Li B, Zhu X, Liu S, Jia S, Li R, Tang KHD. Leaching of chemicals from microplastics: A review of chemical types, leaching mechanisms and influencing factors. Sci Total Environ 2024;906:167666.
- 32. García-Gómez JC, Garrigós M, Garrigós J. Plastic as a vector of dispersion for marine species with invasive potential. A review. Front Ecol Evol 2021;9:629756.
- 33. Beloe CJ, Browne MA, Johnston EL. Plastic debris as a vector for bacterial disease: an interdisciplinary systematic review. Environ Sci Technol 2022;56:2950–8.
- 34. Sunil S, Bhagwat G, Vincent SGT, Palanisami T. Microplastics and climate change; the global impacts of a tiny driver. Sci Total Environ 2024;946:174160.
- 35. Kida M, Ziembowicz S, Koszelnik P. Decomposition of microplastics: Emission of harmful substances and greenhouse gases in the environment. J Environ Chem Eng 2023;11:109047.
- 36. Kabeyi MJB, Olanrewaju OA. Review and design overview of plastic waste-to-pyrolysis oil conversion with implications on the energy transition. J Energy 2023;2023:1–25.
- 37. Brahana P,Zhang M, Nakouzi E,Bharti B.Weathering influences the ice nucleation activity of microplastics. Nat Commun 2024;15:9579.
- 38. Busse HL, Ariyasena DD, Orris J, Freedman MA. Pristine and aged microplastics can nucleate ice through immersion freezing. ACS ES&T Air 2024;1:1579–88.
- 39. Jiao H, Ali SS, Alsharbaty MHM, Elsamahy T, Abdelkarim E, Schagerl M, Al-Tohamy R, Sun J. A critical review on plastic waste life cycle assessment and management: Challenges, research gaps, and future perspectives. Ecotoxicol Environ Saf 2024;271:115942.
- 40. Law KL, Sobkowicz MJ, Shaver MP, Hahn ME. Untangling the chemical complexity of plastics to improve life cycle outcomes. Nat Rev Mater 2024;9:657–67.

- 41. Hale RC, King AE, Ramirez JM. Plastic debris: An overview of composition, sources, environmental occurrence, transport, and fate. In: Microplastic Contamination in Aquatic Environments; 2024. p. 1–31.
- 42. Wang T,Li B,Shi H,Ding Y,Chen H,Yuan F, Liu R, Zou X. The processes and transport fluxes of land-based macroplastics and microplastics entering the ocean via rivers. J Hazard Mater 2024;466:133623.
- 43. Chen Q, Shi G, Revell LE, Zhang J, Zuo C, Wang D, Le Ru EC, Wu C, Mitrano DM. Longrange atmospheric transport of microplastics across the southern hemisphere. Nat Commun 2023;14:7898.
- 44. Evangeliou N, Grythe H, Klimont Z, Heyes C, Eckhardt S, Lopez-Aparicio S, Stohl A. Atmospheric transport is a major pathway of microplastics to remote regions. Nat Commun 2020;11:3381.
- 45. Nafea TH, Chan FKS, Xu Y, Wang C, Wang X, Zhao W, et al. Microplastics Aloft: a comprehensive exploration of sources, transport, variations, interactions and their implications on human health in the atmospheric realm. Earth Sci Rev 2024;255:104864.
- 46. Luo D, Chu X, Wu Y, Wang Z, Liao Z, Ji X, Ju J, Yang B, Chen Z, Dahlgren R, Zhang M, Shang X. Micro-and Nano-plastics in the atmosphere: a review of occurrence, properties and human health risks. J Hazard Mater 2024;465:133412.
- 47. Napper IE, Thompson RC. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 2016;112:39–45.
- 48. O'Brien S, Okoffo ED, O'Brien JW, Ribeiro F, Wang X, Wright SL, Samanipour S, Rauert C, Toapanta TYA, Albarracin R, Thomas KV. Airborne emissions of microplastic fibres from domestic laundry dryers. Sci Total Environ 2020;747:141175.
- 49. Seo JH, Shin Y, Song I, Lim J, Ok YS, Weon S. Atmospheric microplastics: challenges in site-and target-specific measurements. TrAC, Trends Anal Chem 2024;178:117859.
- Fox S, Stefánsson H, Peternell M, Zlotskiy E, Ásbjörnsson EJ, Sturkell E, Wanner P, Konrad-Schmolke M. Physical characteristics of microplastic particles and potential for global atmospheric transport: A meta-analysis. Environ Pollut 2024;342:122938.
- 51. Zhang N, Zhang C, Qin Y, Wang J, Ge X, Li H, Yuan D, Eleonora A. A review of atmospheric microplastics:sources, characteristics, and detection method. Curr Pollut Rep 2024;10:412–29.

- 52. Yu L, Di Zhang J, Liu Y, Chen LY, Tao S, Liu WX. Distribution characteristics of microplastics in agricultural soils from the largest vegetable production base in China. Sci Total Environ 2021;756:143860.
- 53. Jiao M, Wang Y, Yang F, Zhao Z, Wei Y, Li R, Wang Y. Dynamic fluctuations in plant leaf interception of airborne microplastics. Sci Total Environ 2024;906:167877.
- 54. Leonard J, Borthakur A, Koutnik VS, Brar J, Glasman J, Cowger W, Dittrich TM, Mohanty SK. Challenges of using leaves as a biomonitoring system to assess airborne microplastic deposition on urban tree canopies. Atmos Pollut Res 2023;14:101651.
- 55. Liu K, Wang X, Song Z, Wei N, Li D. Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Sci Total Environ 2020;742:140523.
- Xu L, Li K, Bai X, Zhang G, Tian X, Tang Q, Zhang M, Hu M, Huang Y. Microplastics in the atmosphere: Adsorb on leaves and their effects on the phyllosphere bacterial community. J Hazard Mater 2024;462:132789.
- 57. Bi M, He Q, Chen Y. What roles are terrestrial plants playing in global microplastic cycling? Environ Sci Technol 2020;54:5325–7.
- 58. Allen S, Allen D, Moss K, Le Roux G, Phoenix VR, Sonke JE. Examination of the ocean as a source for atmospheric microplastics. PLoS One 2020;15:e0232746.
- 59. Allen D, Allen S, Abbasi S, Baker A, Bergmann M, Brahney J, Butler T, Duce RA, Eckhardt S, Evangeliou N, Jickells T, Kanakidou M, Kershaw P, Laj P, Levermore J, Li D, Liss P, Liu K, Mahowald N, Masque P, Materić D, Mayes AG, McGinnity P, Osvath I, Prather KA, Prospero JM, Revell LE, Sander SE, Shim WJ, Slade J, Stein A, Tarasova A, Wright S. Microplastics and nanoplastics in the marine-atmosphere environment.Nat Rev Earth Environ 2022;3:393–405.
- 60. Yang S, Lu X, Wang X. A perspective on the controversy over global emission fluxes of microplastics from ocean into the atmosphere. Environ Sci Technol 2024;58:12304–12.
- 61. Zhang Y, Kang S, Allen S, Allen D, Gao T, Sillanpää M. Atmospheric microplastics: A review on current status and perspectives. Earth Sci Rev 2020;203:103118.
- 62. Bullard JE, Ockelford A, O'Brien P, Neuman CM.Preferential transport of microplastics by wind. Atmos Environ 2021;245:118038.
- 63. Horton AA, Dixon SJ. Microplastics: An introduction to environmental transport processes. Wiley Interdisciplin Rev Water 2018;5:e1268.

- 64. Liu K, Wang X, Fang T, Xu P, Zhu L, Li D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci Total Environ 2019;675:462–71.
- 65. Allen S, Allen D, Phoenix VR, Le Roux G, Durántez Jiménez P, Simonneau A, Binet S, Galop D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat Geosci 2019;12:339–44.
- 66. Kaya AT, Yurtsever M, Bayraktar SC. Ubiquitous exposure to microfiber pollution in the air. The European Physical Journal Plus 2018;133:488.
- 67. Liu K, Wang X, Wei N, Song Z, Li D. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health. Environ Int 2019;132:105127.
- 68. Liu K, Wu T, Wang X, Song Z, Zong C, Wei N, Li D. Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environ Sci Technol 2019;53:10612–19.
- 69. Wang X, Li C, Liu K, Zhu L, Song Z, Li D. Atmospheric microplastic over the South China Sea and East Indian Ocean: abundance, distribution and source. J Hazard Mater 2020;389:121846.
- 70. Li D, Liu K, Li C, Peng G, Andrady AL, Wu T, Zhang Z, Wang X, Song Z, Zong C, Zhang F, Wei N, Bai M, Zhu L, Xu J, Wu H, Wang L, Chang S, Zhu W. Profiling the vertical transport of microplastics in the West Pacific Ocean and the East Indian Ocean with a novel in situ filtration technique. Environ Sci Technol 2020;54:12979–88.
- 71. Liu K, Wang X, Song Z, Wei N, Ye H, Cong X, Zhao L, Li Y, Qu L, Zhu L, Zhang F, Zong C, Jiang C, Li D. Global inventory of atmospheric fibrous microplastics input into the ocean: an implication from the indoor origin. J Hazard Mater 2020;400:123223.
- 72. Stanton T, Johnson M, Nathanail P, MacNaughtan W, Gomes RL. Freshwater microplastic concentrations vary through both space and time. Environ Pollut 2020;263:114481.
- 73. Dris R, Gasperi J, Saad M, Mirande C, Tassin B. Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar Pollut Bull 2016;104:290–3.
- 74. Knight LJ, Parker-Jurd FNF, Al-Sid-Cheikh M, Thompson RC. Tyre wear particles:an abundant yet widely unreported microplastic? Environ Sci Pollut Res 2020;27:18345–54.
- 75. Dris R, Gasperi J, Mirande C, Mandin C, Guerrouache M, Langlois V, Tassin B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ Pollut

- 2017;221:453-8.
- 76. Yurtsever M, Kaya AT, Bayraktar SC. A research on microplastic presence in outdoor air.In: Proceedings of the International Conference on Microplastic Pollution in the Mediterranean Sea. Springer; 2018. p. 89–97.
- 77. Abbasi S,Keshavarzi B,Moore F,Turner A,Kelly FJ,Dominguez AO, Jaafarzadeh N. Distribution and potential health impacts of microplastics and microrubbers in airand street dusts from Asaluyeh County, Iran. Environ Pollut 2019;244:153–64. d
- 78. Cai L,Wang J, Peng J,Tan Z,Zhan Z,Tan X, Chen Q. Characteristic of microplastics in the atmospheric fallout from Dongguan city, China: preliminary research and first evidence. Environ Sci Pollut Res 2017;24:24928–35.
- 79. Wright SL, Ulke J, Font A, Chan KLA, Kelly FJ. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ Int 2020;136:105411.
- 80. Roblin B, Ryan M, Vreugdenhil A, Aherne J. Ambient atmospheric deposition of anthropogenic microfibers and microplastics on the western periphery of Europe (Ireland). Environ Sci Technol 2020;54:11100–8.
- 81. Edo C, Fernández-Piñas F, Leganes F, Gómez M, Martínez I, Herrera A, Hernández-Sánchez C, González-Sálamo J, Hernández Borges J, López-Castellanos J, Bayo J, Romera-Castillo C, Elustondo D, Santamaría C, Alonso R, García-Gómez H, Gonzalez-Cascon R, Martínez-Hernández V, Landaburu-Aguirre J, Incera M, Gago J, Noya B, Beiras R, Muniategui-Lorenzo S, Rosal R, González-Pleiter M. A nationwide monitoring of atmospheric microplastic deposition. Sci Total Environ 2023;905:166923.
- 82. Allen S, Allen D, Baladima F, Phoenix VR, Thomas JL, Le Roux G, Sonke JE. Evidence of free tropospheric and long-range transport of microplastic at Pic du Midi observatory. Nat Commun 2021;12:7242.
- 83. Zhang Y, Gao T, Kang S, Sillanpää M. Importance of atmospheric transport for microplastics deposited in remote areas. Environ Pollut 2019;254:112953.
- 84. Marina-Montes C, Pérez-Arribas LV, Anzano J, de Vallejuelo SFO, Aramendia J, Gómez-Nubla L, de Diego A, Madariaga JM, Cáceres JO. Characterization of atmospheric aerosols in the Antarctic region using Raman spectroscopy and scanning electron microscopy. Spectrochim Acta A Mol Biomol Spectrosc 2022;266:120452.
- Rodríguez Pirani LS, Picone AL, Costa AJ, Silvestri GE, Berman AL, Sznaider F, Romano RM,

- Vila LG, Ulrich AG, Curtosi A, Vodopivez C. Airborne microplastic pollution detected in the atmosphere of the South Shetland Islands in Antarctica. Chemosphere 2024;368:143762.
- 86. Illuminati S, Notarstefano V, Tinari C, Fanelli M, Girolametti F, Ajdini B, Scarchilli C, Ciardini V, Iaccarino A, Giorgini E, Annibaldi A, Truzzi C. Microplastics in bulk atmospheric deposition along the coastal region of Victoria Land, Antarctica. Sci Total Environ 2024;949:175221.
- 87. Sharaf DK, Khokhar MF, Butt SI, Qadir A, Younas F. Exploration of microplastic concentration in indoor and outdoor air samples: Morphological, polymeric, and elemental analysis. Sci Total Environ 2024;908:168398.
- 88. Maurizi L, Simon-Sánchez L, Vianello A, Nielsen AH, Vollertsen J. Every breath you take:high concentration of breathable microplastics in indoor environments.Chemosphere 2024;361:142553.
- 89. Ding J, Sun C, He C, Zheng L, Dai D, Li F. Atmospheric microplastics in the Northwestern Pacific Ocean: distribution, source, and deposition. Sci Total Environ 2022;829:154337.
- 90. Choi H, Lee I, Kim H, Park J, Cho S, Oh S, Lee M, Kim H. Comparison of microplastic characteristics in the indoor and outdoor air of urban areas of South Korea. Water Air Soil Pollut 2022;233:169.
- 91. Perera K, Ziajahromi S, Bengtson Nash S, Manage PM, Leusch FDL. Airborne microplastics in indoor and outdoor environments of a developing country in South Asia: abundance, distribution, morphology, and possible sources. Environ Sci Technol 2022;56:16676–85.
- 92. Abbasi S, Jaafarzadeh N, Zahedi A, Ravanbakhsh M, Abbaszadeh S, Turner A. Microplastics in the atmosphere of Ahvaz City, Iran. J Environ Sci 2023;126:95–102.
- 93. Dong H, Wang X, Xu L, Ding J, Wania F. A flow-through passive sampler for microplastics in air. Environ Sci Technol 2023;57:2362–70.
- 94. Vianello A, Jensen RL, Liu L, Vollertsen J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci Rep 2019;9:8670.
- 95. Syafei AD, Nurasrin NR, Assomadi AF, Boedisantoso R. Microplastic pollution in the ambient air of Surabaya. Indonesia. Current World Environment 2019;14:290–8.
- 96. Liao Z, Ji X, Ma Y, Lv B, Huang W, Zhu X, Fang M, Wang Q, Wang X, Dahlgren R, Shang X. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J Hazard Mater 2021;417:126007.

- 97. Zhu X, Huang W, Fang M, Liao Z, Wang Y, Xu L, Mu Q, Shi C, Lu C, Deng H, Dahlgren R, Shang X. Airborne microplastic concentrations in five megacities of Northern and Southeast China. Environ Sci Technol 2021;55:12871–81.
- 98. Akhbarizadeh R, Dobaradaran S, Amouei-Torkmahalleh M, Saeedi R, Aibaghi R, Faraji-Ghasemi F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications. Environ Res 2021;192:110339.
- Chen EY, Lin KT, Jung CC, Chang CL, Chen CY. Characteristics and influencing factors of airborne microplastics in nail salons. Sci Total Environ 2022;806:151472.
- 100. Ferrero L, Scibetta L, Markuszewski P, Mazurkiewicz M, Drozdowska V, Makuch P, Jutrzenka-Trzebiatowska P, Zaleska-Medynska A, Andò S, Saliu F, Douglas-Nilsson E, Bolzacchini E. Airborne and marine microplastics from an oceanographic survey at the Baltic Sea: An emerging role of air-sea interaction? Sci Total Environ 2022;824:153709.
- 101. Kernchen S, Löder MGJ, Fischer F, Fischer D, Moses SR, Georgi C, Nölscher AC, Held A, Laforsch C. Airborne microplastic concentrations and deposition across the Weser River catchment. Sci Total Environ 2022;818:151812.
- 102. Chang DY, Jeong S, Shin J, Park J, Park CR, Choi S, Chun CH, Chae MY, Lim BC. First quantification and chemical characterization of atmospheric microplastics observed in Seoul, South Korea. Environ Pollut 2023;327:121481.
- 103. Gaston E, Woo M, Steele C, Sukumaran S, Anderson S. Microplastics differ between indoor and outdoor air masses: insights from multiple microscopy methodologies. Appl Spectrosc 2020;74:1079–98.
- 104. Torres-Agullo A, Karanasiou A, Moreno T, Lacorte S. Airborne microplastic particle concentrations and characterization in indoor urban microenvironments. Environ Pollut 2022;308:119707.
- 105. Xumiao L, Prata JC, Alves JR, Duarte AC, Rocha-Santos T, Cerqueira M. Airborne microplastics and fibers in indoor residential environments in Aveiro, Portugal. Environ Adv 2021;6:100134.
- 106. Xie Y, Li Y, Feng Y, Cheng W, Wang Y. Inhalable microplastics prevails in air: exploring the size detection limit. Environ Int 2022;162:107151. doi:10.1016/j.envint. 2022.107151.
- 107. Jiang J, Ren H, Wang X, Liu B. Pollution characteristics and potential health effects of airborne microplastics and culturable microorganisms

- during urban haze in Harbin, China. Bioresour Technol 2024;393:130132.
- 108. Fang M, Liao Z, Ji X, Zhu X, Wang Z, Lu C, Shi C, Chen Y, Ge L, Zhang M, Dahlgren RA, Shang X. Microplastic ingestion from atmospheric deposition during dining/drinking activities. J Hazard Mater 2022;432.
- 109. Qaiser N, Sidra S, Javid A, Iqbal A, Amjad M, Azmat H, Arooj F, Farooq K, Nimra A, Ali Z. Microplastics abundance in abiotic and biotic components along aquatic food chain in two freshwater ecosystems of Pakistan. Chemosphere 2023;313:137177.
- 110. Tokunaga Y, Okochi H, Tani Y, Niida Y, Tachibana T, Saigawa K, Katayama K, Moriguchi S, Kato T, Hayama S. Airborne microplastics detected in the lungs of wild birds in Japan.Chemosphere 2023;321:138032.
- 111. González-Pleiter M, Fernández-Piñas F, Sorribes EL, Fernández-Valeriano R, López-Márquez I, González-González F, Rosal R. Accumulation of microplastics in predatory birds near a densely populated urban area. Sci Total Environ 2024;917:170604.
- 112. Fernández-Piñas F, Fernández-Valeriano R, García-Baquero GA, LópezMárquez I, González-González F, Rosal R, González-Pleiter M. The potential use of birds as bioindicators of suspended atmospheric microplastics and artificial fibers. Ecotoxicol Environ Saf 2024;282:116744.
- 113. Li H, Yang Z, Jiang F, Li L, Li Y, Zhang M, Qi Z, Ma R, Zhang Y, Fang J, Chen X, Geng Y, Cao Z, Pan G, Yan L, Sun W. Detection of microplastics in domestic and fetal pigs' lung tissue in natural environment: a preliminary study. Environ Res 2023;216:114623.
- 114. Prata JC, Silva ALP, da Costa JP, Dias-Pereira P, Carvalho A, Fernandes AJS, Mendes F, Duarte AC, Rocha-Santos T. Microplastics in internal tissues of companion animals from urban environments. Animals 2022;12:1979.
- 115. Dziobak MK, Fahlman A, Wells RS, Takeshita R, Smith C, Gray A, Weinstein J, Hart LB. First evidence of microplastic inhalation among free-ranging small cetaceans. PLoS One 2024;19:e0309377.
- 116. Zuri G, Karanasiou A, Lacorte S.Microplastics: Human exposure assessment through air,water,and food. Environ Int 2023;179:108150.
- 117. Kern DG, Crausman RS, Durand KTH, Nayer A, Kuhn C. Flock worker's lung: chronic inte stitial lung disease in the nylon flocking industry. Ann Intern Med 1998;129:261–72.
- 118. Momeni MK, Taghipour H, Ghayebzadeh M, Mohammadi M, Keikhaee R. Isolation and char-

- acterization of microplastics from the human respiratory system: Sputum, bronchoalveolar lavage fluid, and pleural fluid simultaneously. Environ Pollut 2025;365:125389.
- 119. Baeza-Martínez C, Olmos S, González-Pleiter M, López-Castellanos J, García-Pachón E, Masiá-Canuto M, Hernández-Blasco L, Bayo J. First evidence of microplastics isolated in European citizens'lower airway. J Hazard Mater 2022;438:129439.
- 120. Chen Q, Gao J, Yu H, Su H, Yang Y, Cao Y, Zhang Q, Ren Y, Hollert H, Shi H, Chen C, Liu H. An emerging role of microplastics in the etiology of lung ground glass nodules. Environ Sci Eur 2022;34:25.
- 121. Ningrum PT, Keman S, Sulistyorini L, Sudiana IK, Hidayat A, Negoro AH, Junaidi H, Kustin K. A systematic review of the effects of airborne microplastic contamination on human lungs. Afr J Reprod Health 2024;28:430–48.
- 122. Di Dong C, CW Chen, Chen YC, Chen HH, Lee JS, Lin CH. Polystyrene microplastic particles:in vitro pulmonary toxicity assessment. J Hazard Mater 2020;385:121575.
- 123. Jenner LC, Rotchell JM, Bennett RT, Cowen M, Tentzeris V, Sadofsky LR. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci Total Environ 2022;831:154907.
- 124. Vianello A, Jensen RL, Liu L, Vollertsen J. Simulating human exposure to indoor airborne microplastics using a breathing thermal manikin. Sci Rep 2019;9:8670.
- 125. Lu W, Li X, Wang S, Tu C, Qiu L, Zhang H, Zhong C, Li S, Liu Y, Liu J, Zhou Y. New evidence of microplastics in the lower respiratory tract: inhalation through smoking. Environ Sci Technol 2023;57:8496–505.
- 126. Qiu L, Lu W, Tu C, Li X, Zhang H, Wang S, Chen C, Zheng X, Wang Z, Lin M, Zhang Y, Zhong C, Li S, Liu Y, Liu J, Zhou Y. Evidence of microplastics in bronchoalveolar lavage fluid among never-smokers: a prospective case series. Environ Sci Technol 2023;57:2435–44.
- 127. Zhu L ,Kang Y, Ma M, Wu Z, Zhang L, Hu R, Xu Q, Zhu J, Gu X, An L. Tissue accumulation of microplastics and potential health risks in human. Sci Total Environ 2024;915:170004.
- 128. Prata JC, da Costa JP, Lopes I, Duarte AC, Rocha-Santos T. Environmental exposure to microplastics: an overview on possible human health effects. Sci Total Environ 2020;702:134455.
- 129. Donkers JM, Höppener EM, Grigoriev I, Will L, Melgert BN, van der Zaan B, van de Steeg E, Kooter IM. Advanced epithelial lung and gut barrier models demonstrate passage of mi-

- croplastic particles. Microplast Nanoplastics 2022;2:6.
- 130. Warheit DB, Hart GA, Hesterberg TW, Collins JJ, Dyer WM, Swaen GMH, Castranova V, Soiefer AI, Kennedy GL. Potential pulmonary effects of man-made organic fiber (MMOF) dusts. Crit Rev Toxicol 2001;31:697–736.
- 131. Seifried TM, Nikkho S, Morales Murillo A, Andrew LJ, Grant ER, Bertram AK. Microplastic particles contain ice nucleation sites that can be inhibited by atmospheric aging. Environ Sci Technol 2024.
- 132. Teska CJ, Dieser M, Foreman CM. Clothing textiles as carriers of biological ice nucleation active particles. Environ Sci Technol 2024;58:6305–12.
- 133. Soutar CA, Copland LH, Thornley PE, Hurley JF, Ottery J, Adams WG, Bennet B. Epidemiological study of respiratory disease in workers exposed to polyvinylchloride dust. Thorax 1980;35:644–52.
- 134. Pauly JL, Stegmeier SJ, Allaart HA, Cheney RT, Zhang PJ, Mayer AG, Streck, RJ. Inhaled cellulosic and plastic fibers found in human lung tissue. Cancer Epidemiol Biomarkers Prev 1998;7:419–28.
- 135. Prata JC. Airborne microplastics: consequences to human health? Environ Pollut 2018;234:115–26.
- 136. Zimmer AT, Maynard AD. Investigation of the aerosols produced by a high-speed, handheld grinder using various substrates. Ann Occup Hyg 2002;46:663–72.
- 137. Murashov V, Geraci CL, Schulte PA, Howard J. Nano- and microplastics in the workplace.J Occup Environ Hyg 2021;18:489–94.
- 138. Stefaniak AB, Johnson AR, du Preez S, Hammond DR, Wells JR, Ham JE, LeBouf RF, Martin SB, Duling MG, Bowers LN, Knepp AK, de Beer DJ, du Plessis JL. Insights into emissions and exposures from use of industrial-scale additive manufacturing machines. Saf Health Work 2019;10:229–36.
- 139. Shahsavaripour M, Abbasi S, Mirzaee M, Amiri H. Human occupational exposure to microplastics: a cross-sectional study in a plastic products manufacturing plant. Sci Total Environ 2023;882:163576.
- 140. Jin W, Zhang W, Tang H, Wang P, Zhang Y, Liu S, Qiu J, Chen H, Wang L, Wang R, Sun Y, Liu P, Tang H, Zhu Y. Microplastics exposure causes the senescence of human lung epithelial cells and mouse lungs by inducing ROS signaling. Environ Int 2024;185:108489.
- 141. Vasse GF, Melgert BN. Microplastic and plastic pollution: impact on respiratory disease

- and health. Eur Respirat Rev 2024;33:230226. doi:10.1183/16000617.0226-2023.
- 142. Lu H, Yin K, Su H, Wang D, Zhang Y, Hou L, Li JB, Wang Y, Xing M. Polystyrene microplastics induce autophagy and apoptosis in birds lungs via PTEN/PI3K/AKT/mTOR. Environ Toxicol 2023;38:78–89.
- 143. Xu L, Bai X, Li K, Zhang G, Zhang M, Hu M, Huang Y. Human exposure to ambient atmospheric microplastics in a megacity: spatiotemporal variation and associated microorganism-related health risk. Environ Sci Technol 2024;58:3702–13.
- 144. Huang Y, He T, Chen X. Interaction between airborne particulates (microplastics) and pathogenic microorganisms. Comprehens Analyt Chem 2023;100:165–83.
- 145. González-Pleiter M, Edo C, Casero-Chamorro MC, Aguilera Á, González-Toril E, Wierzchos J, Leganés F, Fernández-Piñas, F, Rosal R. Viable microorganisms on fibers collected within and beyond the planetary boundary layer. Environ Sci Technol Lett 2020;7:819–25.
- 146. Peng C, Zhang X, Zhang X, Liu C, Chen Z, Sun H, Wang L. Bacterial community under the influence of microplastics in indoor environment and the health hazards associated with antibiotic resistance genes. Environ Sci Technol 2022;56:422–32.
- 147. Amato-Lourenço LF, de Souza X, Costa N, Dantas KC, dos Santos GL, Moralles FN, Lombardi SCFS, Mendroni A, Lindoso JAL, Ando RA, Gallego-Lima F, Carvalho-Oliveira R, Mauad T. Airborne microplastics and SARS-CoV-2 in total suspended particles in the area surrounding the largest medical centre in Latin America. Environ Pollut 2022;292:118299.
- 148. Peries SD, Sewwandi M, Sandanayake S, Kwon H-H, Vithanage M. Airborne transboundary microplastics—a swirl around the globe. Environ Pollut 2024;353:124080.
- 149. Zheng K, Wang P, Lou X, Zhou Z, Zhou L, Hu Y, Luan Y, Quan C, Fang J, Zou H, Gao X. A review of airborne microand nano-plastics: Sampling methods, analytical techniques, and exposure risks. Environ Pollut 2024;363:125074.
- 150. Dias M, Gomes B, Pena P, Cervantes R, Beswick A, Duchaine C, Kolk A, Madsen AM, Oppliger A, Pogner C, Duquenne P, Wouters IM, Crook B, Viegas C. Filling the knowledge gap: scoping review regarding sampling methods, assays, and further requirements to assess airborne viruses. Sci Total Environ 2024;946:174016.
- 151. De-la-Torre GE, Santillán L, Dioses-Salinas DC, Yenney E, Toapanta T, Okoffo ED, Kannan

G, Madadi R, Dobaradaran S. Assessing the current state of plastic pollution research in Antarctica:Knowledge gapsand recommendations. Chemosphere 2024;355:141870.